Studies of Water-in-Qil Emulsions: Stability Studies

Merv Fingas and Ben Fieldhouse
Emergencies Science Division
Environmental Technology Centre
Environment Canada

Ottawa, Ontario

Joseph V. Mullin
U.S. Minerals Management Service |
Herndon, Virginia

Abstract

Studies to determine the stability of water-in-oil emulsions were conducted.
Three oils were used to form emulsions and these were studied by rheological
methods. Tt has been noted that the stability of emulsions can be grouped into three
categories: stable, mesostable and unstable. The differences in the emulsion types are
readily distinguished both by their rheological properties, and simply by appearance.
The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is
at least three orders-of-magnitude greater than the fresh oil. An unstable emulsion
usually has a viscosity no more than one order-of-magnitude greater than that of the
starting oil. A stable emulsion has a significant elasticity, whereas an unstable
emulsion does not. It should be noted that very few emulsions have questionable
stability. Stable emulsions have sufficient asphaltenes (>~5%)to establxsh films of
these compounds around water droplets.

Mesostable emulsions have insufficient asphaltenes to render them completely
stable. Stability is achieved by viscoelastic retention of water and secondarily by the
presence of asphaltene or resin films. Mesostable emulsions display apparent
viscosities of about 80 to 600 times that of the starting 0il and true viscosities of 20 to
200 times that of the starting oil.

A comparison of viscometer readings for characterizing emulsions was made.
It was found that viscometers operating at high shear stress are not useful for emulsion
characterization. Elasticity increases readings up to three-fold and the high shear rate
breaks the emulsion and subsequently the viscosity readings fall through orders-of
magnitude within minutes.

1.0 Introduction
The most important characteristic of a water-in-oil emulsmn is its “stability”.
The reason for this importance is that one must first characterize an emulsion as stable
(or unstable) before one can characterize the properties. Properties change very
significantly for each type of emulsion. (Until recently, emulsion stability has not been
defined (Fingas ef al. 1995b). Therefore, studies were difficult because the end points
of analysis were not defined. The purpose of this paper will be to propose a definition
of stability for water-in-oil emulsions and characteristics of different stability classes.
The ‘stability’ of an emulsion itself might be a question. Historically,
~ emulsions were thought of as unstable, therefore any discussion of ‘stability’ would be
considered trivial at best, and irrelevant at worst. This has changed in recent years.
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Many commercial products resembling water-in-oil emulsions made from crude oil,
have been shown to be stable, especially as it relates to their production, sale, storage
and use as consumer products. A quick scan at the references in this paper shows that
most workers in the field now discuss the ‘stability’ of water-in-oil emulsions.

It has been noted that the stability of emulsions can be grouped into three
categories: stable, unstable and mesostable. These have been distinguished by physical
properties. The viscosity of a stable emulsion at a shear rate of one reciprocal second,
is at least three orders-of-magnitude greater than that of the starting oil. An unstable
emulsion usually has a viscosity no more than two orders-of-magnitude greater than
that of the starting oil. The zero-shear-rate viscosity for a stable emulsion is at least
six orders-of-magnitude greater than that of the starting oil. For an unstable emulsion,
it is usually less than two or three orders-of-magnitude greater than the viscosity of the
starting oil. A stable emulsion has a significant elasticity, whereas an unstable
emulsion does not. These properties can then be used in the design of any emulsion-
breaking test as a quick analytical tool. Analytical techniques are then largely required
to test the questionable emulsions or to rapidly confirm the stability of the others.

Studies in the past two years have shown that a class of ‘very stable' emulsions
exists, characterized by their persistence over several months. These stable emulsions
actually undergo an increase in viscosity over time. Monitoring of these emuisions has
been performed for over two weeks and new studies over much longer times are being
conducted. "Unstable' emulsions do not show this viscosity increase and their viscosity
is less than two orders-of-magnitude greater than the starting oil. The viscosity
increase for stable emulsions is at least three orders-of-magnitude greater than the
starting oil. The present authors have studied emulsions for many years (Bobra et al.
1992; Fingas ef al. 1993a, 1993b, 1993¢, 19944, 1994b, 1995a, 1995b). The last of
these references describes studies to define stability. The findings of this study are
summarized here. It was concluded both on the basis of the literature and experimental
evidence above, that certain emulsions can be classed as stable. Some (if not all or
many) stable emulsions increase in apparent viscosity with time (ie. their elasticity
increases). The stability derives from the strong visco-elastic interface caused by
asphaltenes, perhaps along with resins. Increasing viscosity may be caused by
increasing alignment of asphaltenes at the oil-water interface.

Mesostable emulsions are emulsions that have properties between stable and
unstable emulsions (really cil/water mixtures) (Fingas ef al. 1995b). It is suspected that
mesostable emulsions lack sufficient asphaltenes to render them completely stable or
still contain too many de-stabilizing materiais such as smaller aromatics. The viscosity
of the oil may be high enough to stabilize some water droplets for a period of time.
Mesostable emulsions may degrade to form layers of oil and stable emulsions. _
Mesostable emulsions can be red in appearance or black. Mesostable emulsions are
probably the most commonly-formed emulsions in the field.

Unstable emulsions are those that decompose (largely) to water and oil rapidly
after mixing, generally within a few hours. Some water may be retained by the oil,
especially if the oil is viscous.

The most important measurements taken on emulsions are forced oscillation
rheometry studies. The presence of elasticity clearly defines whether or not a stable
emulsion has been formed. The viscosity by itself can be an indicator (not necessarily
conclusive, unless one is fully certain of the starting oil viscosity) of the stability of the



emulsion. Colour is not a reliable indicator. This laboratory’s experience is that all
stable emulsions were reddish. Some mesoemulsions had a reddish colour and
unstable emulsions were always the colour of the starting oil. Water content is not an
indicator of stability and is error-prone because of ‘excess’ water that may be present.

2.0 Literature Review

In previous papers, the authors have reviewed the literature that relates to the
formation and stability of emulsions (Fingas et al. 1995b; Fingas ef al. 1996). The
literature review here includes only that literature relevant to emulsion stability and
formation published in the past year.

In 1996, a major monograph on emulsion stability was published, entitled
“Emulsions and Emulsion Stability” (references in this document will be used
throughout this paper). In chapter one of this book, Friberg and Yang review emulsion
stability and de-stabilization processes (Friberg and Yang, 1996). The main processes
of de-stabilization, flocculation, coalescence and creaming are described and
mathematical descriptions of these processes given. Flocculation is usually the first
process and consists of individual droplets approaching and becoming associated. This
is distinguished from coalescence which is the combination of droplets. Creaming is
the standard terminology for oil rising to the surface and forming a consistent surface
layer.

Bibette and Leal-Calderon (1996) reviewed the stability of emulsions
particularly as it relates to those which are surfactant-stabilized. They note that many
of the processes are poorly understood, but that there is much more recent work in the
field which promises to explain some of the physical processes.

Breen et al. (1996) reviewed emulsion stability. The source of stability for
emulsions is the layer of asphaltenes (and resins) at the oil-water-interface. Several
mathematical expressions for this stability are reviewed. Two forces stabilizing
emulsions are confirmed, that of the surface-active forces and that of viscosity-based
forces. The surface-active force, as created by the asphaltene layer, is the primary
force responsible for long-term emulsion stability.

Dukhin and Sjéblom (1996) summarized the kinetics of emulsion coagulation.
They noted that emulsion stability can be considered from four major viewpoints.
Thermodynamic stability is usually thought of as being the primary criteria. Emulsions
are not thermodynamically stable, Kinetic stability implies that emulsions are stable for
a reasonable amount of time - eg. days. This is the definition of emulsion stability that
is most operative. Aggregative stability implies stability by composition as a whole. If
the aggregate retains its physical and chemical composition for the time under
consideration, it can be considered to be stable.

Fordedal et al. (1996a) studied crude oil emulsions in high electric fields. They
found that the stability in water-in-oil (W/Q) emutsions is due to the asphaltene
fraction. They noted that although the resin fraction is surface-active, resins cannot,
by themselves, stabilize an emulsion,

Ferdedal ef al. (1996b) studied model crude ¢il emulsions by means of
dielectric time-domain spectroscopy. Stability of the model emulsions varied with the
choice of organic solvent and the amount of asphaltenes. Emulsions were less or not
stable in aromatic solvents.

Ferdedal and Sjoblom (1996) studied percolation (a form of de-stabilization



phenomenon) in water-in-oil (W/Q) emulsions. They noted that percolation did not
occur readily for oils with high asphaltene contents and thus higher stabilities were
attributed to emulsions.

Neumann and Paczynska-Lahme (1996) reviewed the stability and
demulsification of W/O emulsions. Stability of emulsions is attributed to surface-active
films consisting of several components, but primarily asphaltenes.

Puskas and co-workers (1996) studied water-in-oil emulsions and found that
besides the usual stabilizers of asphaltenes and resins that a high-molecular weight
paraffin was also capable of stabilizing water-in-oil emulsions. This paraffin had
carbonyl functional groups and thus was polar and was found to exist in & colloid of
lamellar structure.

Sjsblom and Ferdedal (1996) reviewed the application of dielectric
spectroscopy to emulsions. In this review, they consider the stability of water-in-oil
emulsions. Asphaltenes at the interface are the source of stability for water-in-oil
emulsions. It is noted that 2 to 3 % of asphaltenes are required to form stable
emulsions. Resins are surface-active, but do not contribute strongly to emulsion
stability.

The consensus of the literature is as follows:

1. stable and iess-stable emulsions exist,

2. emulsion stability resulis from the viscoelastic films formed by asphaltenes,
3. asphaltenes produce more rigid films than do resins,

4. stable emulsions might be classified by their dielectric and viscoelastic
properties,

5. water content does not appear to relate to stablllty, however, very low or
very high water contents (<30 or >90%) will not yield stable emulsions,

6. most researchers use visible phase separation to classify emulsions as stable
or not and most concede that this is not an optimal technique.

3.0 Experimental

Water-in-oil emulsions were made in a rotary agitator and then the rtheometric
characteristics of these emulsions studied over time. Three oils were used: Green
Canyon, a Louisiana offshore oil, which is known to form unstable and mesostable
emulsions; Arabian Light, which makes mesostable emulsions and Sockeye, a .
California oil, which makes stable emulsions (Fingas et al. 1995b, 1996). Data on oil
properties are given in Table 1.



Table 1 Properties of the Fresh Test Qils

Arabian Green Sockeye
Parameter * Light Canyon
Density (15°C) g/mL 0.866 0937 0.897
Viscosity (15°C) mPa.s 14 177 45
Complex Modulus mPa 200 1560 400
True Viscosity (15°C) mPa.s 20 200 40
Resins (wt. %) 6 14 13
Asphalienes (wt. %) 3 4 8
Aromatics (wt. %) 39 40 31
Waxes (wt. %) 4 2 5

Total BTEX + C; Benzenes (%) 15 033 | 3]

* All values are taken from Jokuty et al. 1996 except for complex modulus
and true viscosity, which were measured here.

Emulsions were made in a 8-place rotary agitator (Associated Design) which
was equipped with a variable speed motor (1.5 to 56 rpm). The mixing vessels were
Nalgene 2.2 litre wide mouth Teflon bottles. The fill was typically 500 mL salt water
(3.3% wiv NaCl) and 25 mL oil. This yielded an oil-water-ratio of 1:20. Other ratios
and fill volumes were used as noted in Table 2. Lower fill ratios yield higher energy
levels and thus could influence the emulsion formation. Studies were performed always
at S0 rpm, which was set using a tachometer.

Viscosities were characterized by several means. For characterization of
apparent viscosity, the cup and spindle system was used. This consisted of the Haake
Roto visco RV20 with M5 measuring system, Haake Rheocontroller RC20 and PC
with dedicated software package Roto Visco 2.2. The sensors and vessels used were
the SVI spindle and SV cup. The shear rate was one reciprocal second. The -
viscometer was operated with the following ramp times: one minute to target shear
rate 1/s; one minute at target shear rate (1/s). The temperature was maintained at 15
degrees Celsius. Fifteen minutes was allowed for the sample to thermally equilibrate.

The following apparatuses were used for rheological analysis: Haake RS100
RheoStress rheometer, IBM-compatible PC with RS100-CS Ver. 1.28 Controlled
Stress Software and RS100-OSC Ver. 1.1.4 Oscillation Software, 60 mm 4-degree
cone with corresponding base plate, clean air supply at 40 p.s.i., and a circulation bath
maintained at 15 degrees Celsius. Analysis was performed on a sample scooped onto
the base plate and raised to the measuring cone. This was left for 15 minutes to
thermally equilibrate at 15 degrees Celsius.



Controlled Stress was used for determining the linear viscoelastic range
(stress independent region) and the creep and recovery analysis. The linear
viscoelastic range (LVER) was determined first for all samples, as all measurements
must be made in the LVER to be valid. It was determined by making a stress sweep
over the stress range to identify the break point (estimates will speed this process).
After identifying the stress independent range, two stress values were chosen for
subsequent analysis - one close to the break point, and one other. These stress values
were used in the oscillation procedures.

Forced Oscillation - this was used for determining the tan() (ratio of
viscous to elastic components) zero-shear viscosity and G* (total resistance to flow).
Values were obtained from a stress sweep of the sample at 1 Hz. Calculation provides
the final values.

Apparent Viscosity - For comparison purposes, a Brookfield Synchro-Lectric
viscometer, model LVT, was employed with a L4 spindle. The unit was operated
according to the instructions supplied by the manufacturer.

. Water Content - A Metrohm 701 KF Titrino Karl-Fischer volumetric titrator
and Metrohm 703 Ti Stand were used. The reagent was Aquastar Comp 5 and the
solvent, 1:1:2 Methanol:Chloroform:Toluene.

4.0 Results and Discussion

The rheological data are given in Tables 2, 3 and 4. These tables provide the
experimental variables as well as the results. The first line shows the fraction of the
test vessel fill, generally ¥, but sometimes 1/4. The less the fill, the more energy
imparted to the oil and water. The ratio of oil to water is then given and this is 1:10,
1:20, 1:30, 1:40 or 1:50. The final value in the first line is the time of shaking which is
9 or 18 hours. The second line of the tables gives the complex modulus which is the
vector sum of the viscosity and elasticity. The cone/plate viscosity is then given. The
tan (delta) is the ratio of the viscosity to the elasticity component. Then the end of the
slope before the yield point (LVER) is given. The apparent viscosity from the RV-20
(Haake) is given and finally the water content of the emulsion.

Table 5 gives the results of viscosity measurements of the emulsions using the
Brookfield viscometer, the plate-plate (RS100) viscometer and the Haake RV-20
viscometer, Further discussion on these results is given below.

Observations were made on the appearance of the emulsions. All of the
Sockeye emulsions appeared to be stable and remained in tact over several days in the
laboratory, except for those formed at the oil:water ratios of 1:50. All of the Arabian
Light emulsions formed meso-stable emulsions and broke after a few days into water,
free oil and emulsion. The time for these emulsions to break down varies from about 1
to 3 days. The emulsion portion of these break-down emulsions appears to be
somewhat stable, although studies on them have not been performed. The Green
Canyon emulsions were mesostable at formation ratios of 1:10 and 1:20 (0:W). These
broke after about 1 day of sitting into water, oil and emulsion. Green Canyon
emulsions formed at ratios of 1:30 (O:W) and higher were not stable and broke into
water and oil within hours of mixing. It is suspected that the O:W ratio only relates to
the shaking energy applied to the cil and may not be meaningfu! in itself.

The true viscosity of the emulsions is summarized in Table 6 and illustrated in
Figure 1. These show that there exists a wide gap between the viscosities of stable
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Table § Comparison of Viscosity Measurements
ol Sample# Time(min) RPM Brookficld Viscosity ~ RS100 Viscosity  RV20 Viscosity
LV4 spindle (mPa.s) {mPa.s) (mPa.s)
Arabian Light 0303-3 i 60 <500 4500 10350
5 60 <500
10 60 <500
15 60 <500
(LV2 spindic) 03034 1 0.6 13500 3900 11450
5 0.6 13000
10 0.6 13000
15 0.6 13000
Green Canyon 65 02202 1 30 3600 9300 13300
5 30 3600
10 30 3600
15 30 3600
0303-1 1 60 2200 7400 13150
5 6) 2100
10 60 2200
15 60 2400
0303.2 1 30 2200 7500 13750
5 30 2400
10 30 2800
. 15 30 3000
0304-1 1 30 6200 £2000 25200
5 30 7000
10 30 6800
15 30 6400
0304-2 H 30 5600 12000 24450
5 30 6600
10 30 5600
is 30 5600
0306-1 1 30 3000 11000
5 30 3200
10 30 3600
15 30 3600
0366-2 1 30 3000 9700
5 30 3400
10 30 3800
15 30 4000
Sockeye 0303-5 1 0.6 560000 34000 223500
5 0.6 400000
10 0.6 340000
15 0.6 290000
0303-6 H 0.6 540000 38000 218000
5 0.6 430000
10 0.6 320000
15 0.6 280000
0304-5 1 Ls 76000 11200 67600
5 1.5 52000
10 15 48000
15 1.5 44000
0304-6 1 15 64000 10500 73300
5 15 52000
10 15 48000
15 L5 44000
0306-5 1 L5 100000 8000
5 1.5 64000
10 15 56000
15 15 52000
0306-6 i 15 £8000 7500
5 15 64000
10 L5 64000
15 L5 60000
0313.5 1 0.6 440000 25000 136300
5 0.6 350000
10 0.6 270000
. 15 0.6 250000
0313-6 1 0.6 470000 28000 129600
5 0.6 350000
10 0.6 280000
15 06 240000



and mesostable emulsions and a lesser, but discernable, gap between the mesostable
and unstable emulsions. Table 7 shows the differences between the starting oil and the
emulsion viscosities (true rather than apparent values). These are illustrated in Figure
2. These tables show that the stable emulsion has a viscosity about 700 times that of
the starting fresh oil, the mesostable from 40 to 200 times the starting oil and the
unstable, values less than 40. This can be compared with the apparent viscosities
(those viscosity measurements which include elasticity), given in Table 8, where the
stable Sockeye emulsion has a viscosity about 3000 times that of the starting oil. The
mesostable emulsions have apparent viscosities about 80 to 600 times that of the
starting oil.

The effect of the formation ratios was noted. This is summarized in Table 9.
It should be noted that the effect of the ratios also affects the energy levels in the
shaker. Thus conclusions about this are difficult to draw.

Three different types of viscometers were used to perform the measurements.
The RS100 is a stress-controlled rheometer which provides true viscosity
measurements along with other theometric parameters. The RV20 is an advanced cup
and spindle instrument, with variable shear control, which provides an apparent
viscosity measurement. The Brookfield is a smaller unit which has no shear stress
control. The summary of the difference between results is shown in Table 10. This is
illustrated in Figure 3. As can be seen by these values, a high shear instrument such as
the Brookfield results in erroneous values, especially after time. Some of the time and
viscosity relationships are illustrated in Figure 4. This shows that viscosities changes
by orders-of-magnitude over a few minutes. Figure 3 shows that the 95% confidence
level for the Brookfield is very wide, even if one only uses the 1 minute viscosity
value. The errors for the Brookfield are too high to use as a reliable measurement
instrument for an unknown emulsion. The high elasticity of emulsions, which is read by
non-shear stress-controlled instruments, leads to very high initial viscosity readings -
as much as a factor of 3 over the true value. The high shear of the instrument ‘breaks’
the emulsion over time and soon a much lower reading is given. This is unpredictable
and depends on several characteristics of the emulsion. Therefore, the Brookfield
reading is almost a random one unless used with a known substance under very -
controlled conditions.

The relationship of these data to the field is of relevance. The laboratory
experience is that meso-stable emulsions would not separate under continuous
agitation as would be experienced at sea, however, any free oil separating would form
a slick which could move away from the emulsion. Another scenario is that under
energetic conditions, high sea energies could maintain an emulsion simply because the
injection of water droplets could equal that lost by separation Upon cessation of the
high energy, the ‘emulsion’ would separate. Both scenanos could explain some of the
observations at several spill sites.

The role of asphaltenes in the emulsion formation appears again in these three
oils. The most stable emulsion was produced by Sockeye which had the highest
asphaltene content, 8%. All of these oils had high resin contents, again indicating that
asphaltenes are more responsible for high stabilities.



Table 6

Table 7

Table 8

Table 9

Summary of True Viscosity Differences for Emuisions
Emulsion type Average Viscosity of Emulsion Samples (mPa.s)
days 0 1 7 30
stable, Sockeye 27700 27200 28900 24900
mesostable, Arabian Light 4100 2100 2900 2800
mesostable, Green Canyon 8900 8500 7200 7200
unstable, Green Canyon 1100 1800
Emulsion type Standard Deviation of above Data (mPa.s)
days 0 1 7 30
stable, Sockeye 5400 6100 1110 3300
mesostable, Arabian Light 1200 1200 1100 1400
mesostable, Green Canyon 2100 1900 2200 1800
unstable, Green Canyon 700 300
Summary of Differences between Emulsion and Starting Oil Viscosity
Emulsion type Ratio of Viscosity of Emulsion and Starting Oil
days 0 1 7 30
stable, Sockeye 690 680 720 620
mesostable, Arabian Light 210 110 150 140
mesostable, Green Canyon 40 40 40 40
unstable, Green Canyon 10 10
Apparent Viscosity Differences Between Emulsions and Starting Oil
Apparent
Viscosity  Standard Ratio Ratio
at formation Deviation  to Starting fo True
Emulsion type mPa.s mPa.s Qil Viscosity
stable, sockeye 152500 42800 3820 6
mesostable , Arabian Light 11800 2500 590 3
mesostable , Green Canyon 15700 1500 80 2
unstable, Green Canyon 5700 900 30 5
Effect of Formation Ofl: Water Ratio on Stability
0:W Ratio and Type Days 0 1 7 30
1:10 Sockeye, mesostable 9300 6600 7000 :
1:20 Sockeye, stable 30100 29500 31500 24300
1:30 Sockeye, stable 23000 21000 21500
1:40 Sockeye, stable 23000 24000 25500
1:50 Sockeye, unstable 2700
po significant difference for Arabian Light
All Arabian Light -mesostabl 4100 2100 2900 2800
1:10 Green Can. mesostable 11200 10400 9300
1:20 Green Can. mesostable 8900 8500 7200
1:30 Green Can. unstable 1900 2400 5200
1:40 Green Can. unstable 700 1100 6700

1:50 Green Can. unstable 600
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Table 10  Summary Comparison of Viscosity Measurements

Apparent Viscosity True Viscosity  Apparent Viscosity

Oil Sample # RPM Brookficld Viscosity RS100 Viscosity RV20 Viscosity
LV4 spindle {mPa.s) (mPa.s) (mPa.s)
Arabian Light 0303-3 60 <500 4500 10350
{LV2 spindle) 0303-4 0.6 13500 3900 11450
Green Canyon 65  (0220-2 30 3600 9300 13300
0303-1 60 2200 7400 13150
0303-2 30 2200 7500 13750
0304-1 30 6200 12000 25200
0304-2 30 5600 12000 24450
0306-1 30 3000 11000
0306-2 30 3000 9700
Sockeye 0303-5 0.6 560000 34000 223900
0303-6 0.6 540000 38000 218000
0304-5 1.5 76000 11200 67600
0304-6 1.5 64000 10500 73300
0306-5 1.5 100000 8000 .
0306-6 1.5 83000 7500
0313-5 0.6 440000 25000 136300
0313-6 0.6 470000 28000 . 129600

5.0 Conclusions

The theometric studies on the emulsions of three oils shows that there exist
large differences in the viscosities (both apparent and true) of unstable, mesostable and
stable emulsions. The results are summarized in Table 10.

Table 11 Summary of Emulsion Characteristics

Parameter Mesostable Emulsion Stable Emulsion
True viscosity difference 20-200 700

from starting oil

Apparent viscosity 80-600 3000
difference from starting oil

Lifetime <3 days infinite
Appearance before breaking viscous brown mass solid-like brown mass
Appearance after breaking 3-layers not relevant
Main stabilizing force viscoelasticity asphaltene film
Secondary stabilizing force asphaltene film viscoelasticity

The studies show that there are some variations in the formation of emulsions
relating to the energy of formation. These require further investigation.

The comparison of measurement techniques shows that viscometers which do
not apply controlled stress are not accurate for characterizing unknown emulsions.



Elasticity produces high viscosity readings and the high shear stress rate can break
some emulsions producing unusually low readings. The latter occurs over time and
thus the readings are highly time dependent.

The results presented in this paper are consistent with previous results from the
present authors and the literature. It was suggested that mesostable emulsions lack
sufficient asphaltenes to render them completely stable or still contain too many de-
stabilizing materials such as smaller aromatics. The viscosity of the oil may be high

_ enough to stabilize some water droplets for a period of time. Mesostable emulsions are
probably the most commonly-formed emulsions in the field. It was noted that stable
emulsions derive from oils that have asphaltene contents greater than 3 to 5% and a
lower (as yet undefined) aromatic content. It was suspected that the BTEX content
was most important because these can dissolve the asphaltenes. Further work on the
interaction of these components is necessary before exact prediction of emulsion
formation can occur.
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